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Abstract 

We present a computational study of attentional capture by 
meaning, based on Barnard et al's key-distractor attentional 
blink task. We highlight a sequence of models, from an 
abstract black-box to a structurally detailed white-box model. 
Each of these models reproduces the major findings from the 
key-distractor blink task. We argue that such multi-level 
modelling gives greater confidence in the theoretical position 
encapsulated by these models. 

Keywords: Attentional blink; LSA; semantic modulation; 
multi-level modeling. 

Introduction 

There are now many different approaches to the 

computational modelling of cognition, e.g. symbolic models 

(Newell 1990; Kieras and Meyer 1997), cognitive 

connectionist models (McLeod, Plunkett et al. 1998) and 

neurophysiologically prescribed connectionist models 

(O'Reilly and Munakata 2000). The relative value of 

different approaches is a hotly debated topic, with each 

presented as an alternative to the others, suggesting that they 

are in opposition to one another, e.g. (Fodor and Pylyshyn 

1988; Hinton 1990). However, another perspective is that 

these reflect different levels of abstraction / explanation of 

the same system that are complementary, rather than 

fundamentally opposed. 

Computer science, which has often been used as a 

metaphor in the cognitive modelling domain, gives a clear 

precedent for thinking in terms of multiple views of a single 

system. An illustration of this is what is now probably the 

most widely used design method, the Unified Modelling 

Language (UML) (Booch, Rumbaugh et al. 1999). It is not 

that this perspective has been completely lost on cognitive 

scientists; indeed, Marr famously elaborated a version of 

this position in his three levels of cognitive description 

(Marr 2000). However, despite Marr's observations, 

concrete modelling endeavours rarely, if ever, consider 

multiple abstraction levels in the same context and 

particularly how to relate those levels. 

Multiple Level Cognitive Modelling 

In this paper, we can distinguish between the following two 

levels of explanation of a cognitive phenomenon. Firstly, 

high-level abstract descriptions of the mathematical 

characteristics of a pattern of data, e.g. (Stewart, Brown et 

al. 2005). Secondly, low-level detailed models of the 

internal structure of a cognitive system, e.g. (Dehaene, 

Kerszberg et al. 1998). These two levels of explanation 

really reflect different capacities to observe systems; that is, 

the extent to which the system is viewed from outside or 

inside, i.e., as a black or white box. There are clear pros and 

cons to these forms of modelling, which we discuss now. 

Black-box (Extensionalist) Modelling. With this approach, 

no assumptions are made about the internal structure of the 

system and there is no decomposition at all of the black-box 

into its constituent components. Thus, the point of reference 

for the modeller is the externally visible behaviour, e.g. the 

stimulus-response pattern. That is, such models are 

extensionalist in nature. A critical benefit of black-box 

modelling is that a minimal set of assumptions are made, 

especially in respect of the system structure. Consequently, 

there are less degrees of freedom and fewer hidden 

assumptions, making data fitting and parameter setting both 

well founded and, typically, feasible. For example, if the 

system can be described in closed form, key parameters can 

be determined by solving a set of equations, if not, 

computational search methods can be applied. 

White-box (Intensionalist) Modelling. In contrast, the 

internal (decompositional) structure of the system is 

asserted with this approach. That is, such models are 

intensionalist in nature. Although we can bring theories of 

cognitive architecture and (increasingly) neural structure to 

bear in proposing white-box models, a spectrum of 

assumptions (necessarily) needs to be made. Furthermore, 

typically, many of these assumptions concern the internal 

structure of the system. While structurally detailed models 

of cognition are likely to be the most revealing (especially 

with the current emphasis on neurophysiological correlates), 

deduction from these models is more slippery and 

potentially less well founded. Most importantly, many 

assumptions, such as settings of key parameters, need to be 

made, many of which may, at best, require complex 

justification and, at worst, be effectively arbitrary. As a 

result, parameter setting and data fitting is more difficult 

and, arguably, less well founded with white-box models. 

We can summarise then by saying that black-box 

modelling describes what a cognitive system does and it 

describes it in a relatively contained and well-founded 

manner. However, white-box modelling cannot be ignored, 

since it enables us to describe how a cognitive system 

functions, which is a concern for both traditional 

information processing and more recent neurophysiological 

explanations. Thus, when tackling the computational 

modelling of a particular cognitive phenomenon, one should 
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start with an abstract black-box analysis of the observable 

behaviour arising from the phenomenon. Then, from this 

solid foundation, one could develop increasingly refined and 

concrete models, in a progression towards white-box 

models. Importantly though, this approach enables cross 

abstraction level validation, showing, for example, that the 

white-box model is correctly related to the black-box model. 

This paper provides an initial step in the direction of 

multilevel cognitive modelling. In particular, the refinement 

we present is more from black to dark-gray, then to light-

gray! More complete instantiation of our approach awaits 

further theoretical work on how to relate the sorts of models 

developed in the cognitive modelling setting. 

A key contribution of the article will be the identification 

of analogous parameter manipulations in all the three 

models. These cross-model relationships effectively serve as 

a verification that the theoretical claims we make of our 

most intensionalist model are well-founded. 

Key-distractor Attentional Blink 

We illustrate our approach in the context of a study of 

temporal attention. To do this, we reproduce data on the 

key-distractor attentional blink task (Barnard, Scott et al. 

2004), which considers how attention is drawn to 

semantically salient items. A particular reason for focusing 

on this task is that it maps out the profile of attentional 

capture by meaning over time. This is encapsulated in the 

serial position curve; see Figure 1. 

In order to examine semantic effects, (Barnard, Scott et al. 

2004) used a variant of the Attentional Blink (AB) paradigm 

in which no perceptual features were present to distinguish 

targets from background items. In this task, words were 

presented at fixation in Rapid Serial Visual Presentation 

(RSVP) format, at around 10 items per second. Targets were 

only distinguishable from background items in terms of 

their meaning. This variant of the paradigm did not rely on 

dual target report. Rather, participants were simply asked to 

report a word if it refers to a job or profession for which 

people get paid, such as waitress, and these targets were 

embedded in background words that all belonged to the 

same category, e.g. nature words. However, streams also 

contained a key-distractor item, which, although not in the 

target category, was semantically related to that category. 

The serial-position that the target appeared after the key-

distractor was varied. 

Participants could report the target word (accurate report), 

say “Yes” if they were confident a job word had been there 

but could not say exactly what it was, or say “No” if they 

did not see a target, and there were trials on which no target 

was presented. When key-distractors were household items, 

a different category from both background and target words, 

there was little influence on target report.  However, key-

distractors that referenced a property of a human agent, but 

not one for which they were paid, like tourist or husband, 

gave rise to a classic and deep blink as shown in Figure 1a 

(e.g. the HS - Correct ID curve) & Figure 2b. The horizontal 

axis denotes lag, which indicates the serial position of the 

target relative to the key-distractor. The vertical axis denotes 

the proportion of each types of responses used. Thus, 

(Barnard, Scott et al. 2004) showed that the level of salience 

of the key-distractor, i.e. how related it is to the target 

category, modulates how strongly attention is captured. In 

this paper, we will concentrate on quantitatively modeling 

this key effect that semantic similarity modulates the blink 
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Figure 1 Proportion of different types of responses. HS and LS denote high and low salient condition respectively; 

Correct ID denotes correct report of target identity. “Yes” denotes response if subject was confidant a job word had 

been there but could not say exactly what it was. “No” denotes responses if subject did not see a target. 
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depth as shown in Figures 1a & 2b, and present both (black-

box) extensionalist and (white-box) intensionalist models. 

Extensionalist Model – Data Fitting 

The most extensionalist approach begins with behavioural 

data from Barnard’s key-distractor task. Accordingly, this 

model fits the behavioural data using a closed-form 

equation. This approach has been applied to almost every 

branch of science in order to characterise the observed 

behaviour and formulate mathematical models of the 

underlying mechanisms. This technique has also been 

widely used in modelling response time distributions (Van 

Zandt 2000) and, more recently, in modelling serial position 

curves of AB tasks (Cousineau, Charbonneau et al. 2006). 

In our context of exploring the key-distractor AB task, the 

human data has a sharp blink onset and shallow recovery as 

shown in Figure 1a (e.g. the HS - Correct ID curve) & 

Figure 2b. This shape matches an inverted Gamma 

distribution (GD). (Note, there is a shape parameter in the 

GD, which determines the skewness of the distribution. 

Increasing the shape parameter, moves the GD towards a 

normal distribution; decreasing it, moves the GD towards an 

exponential distribution.) Hence, we use the following 

equation to model our AB curves. 

 

)()( xybaxf ⋅+=  

 

where x denotes lag; a is the baseline parameter, which sets 

baseline performance and, thus, performance following 

blink recovery; b is the depth parameter, which sets the 

difference between the deepest point of the blink and the 

baseline; and y(x) denotes the GD, which also has 

parameters. However, b is the only parameter that changes 

significantly when different key-distractors are used in the 

experiment. The function becomes the baseline if b is 0, i.e. 

complete absence of the blink and baseline performance at 

all lags. Hence, we argue that b is related to salience of the 

key-distractor and thus characterises the attentional capture 

by salience effect we are interested in. 

A simple search of the parameter space has proved 

sufficient to yield a good fit to the experimental data. We 

show this fit in Figure 1b. Note, the ratio of the b parameter 

between low and high salient conditions is around 

44.09.0/4.0 ≈ . Moreover, the GD shape parameter is 

relatively small for all curves. This suggests that the blink 

curves are asymmetrical. It will become clear that this 

relationship is consistent among our different models.  

Intermediate Model – Intrinsic Identification 

In this section, we model the internal structure of the system 

as shown in Figure 2a. Three principles underlie our model: 

sequential processing, 2-stages and serial allocation of 

attention. We discuss these principles in turn. 

Sequential Processing. With any RSVP task, items arrive 

in sequence and need to be correspondingly processed. 

Thus, we require a basic method for representing this 

sequential arrival and processing of items.  At one level, we 

can view our approach as implementing a pipeline. New 

items enter the front of the pipeline from the visual system; 

they are then fed through until they reach the back of the 

pipeline, where they enter working memory (WM). Every 

cycle, a new item enters the pipeline and all items currently 

in transit are pushed along one place. The key data structure 

that implements this pipeline metaphor is a delay-line as 

shown in Figure 2a. It could also be viewed as a symbolic 

analogue of a sequence of layers in a neural network; a 

particularly strong analogue being with synfire chains 

(Abeles, Bergman et al. 1993). It is a very natural 

mechanism to use in order to capture the temporal properties 

of a blink experiment, which is inherently a time 

constrained order task. 

2-Stages. Like (Chun and Potter 1995; Bowman and Wyble 

2007), (Barnard, Scott et al. 2004) and (Barnard and 

Bowman 2004) argued for a two-stage model, but this time 

recast to focus exclusively on semantic analysis and 

executive processing. In particular, (Barnard and Bowman 

2004) modelled the key-distractor blink task using a two-

stage model. In the first stage, a generic level of semantic 

representation is monitored and initially used to determine if 

an incoming item is salient in the context of the specified 

task. If it is found to be so, then, in the second stage, the 

specific referential meaning of the word is subjected to 

detailed semantic scrutiny; thus, a word’s meaning is 

actively evaluated in relation to the required referential 

properties of the target category. If this reveals a match, 

then the target is encoded for later report. The first of these 

stages is somewhat akin to first taking a “glance” at generic 
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Figure 2 (a) Internal structure. (b) Target report accuracy 

by lag in humans for high and low salient key-distractors 

with intrinsic identifications. (c) Salience assignment. 

Semantics in LSA are expressed in a high dimensional 

space. This illustration is 2D for ease of depiction. 
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meaning, with the second akin to taking a closer “look” at 

the relationship to the meaning of the target category. These 

two stages are implemented in two distinct subsystems as 

shown in Figure 2a: the implicational subsystem or Implic 

and the propositional subsystem or Prop (Barnard 1999). 

(We consider how these subsystems fit into a larger 

cognitive framework, ICS, in the conclusion.) 

These two subsystems process qualitatively distinct types 

of meaning. One, implicational meaning, is holistic, abstract 

and schematic, and is where affect is represented and 

experienced (Barnard 1999). The other is classically 

“rational”, being based upon propositional representation, 

capturing referentially specific semantic properties and 

relationships. Semantic errors make clear that sometimes we 

only have (referentially non-specific) semantic gist 

information available to us, e.g. the Noah illusion illustrates 

implicational meaning (Erickson and Mattson 1981). 

Serial Allocation of Attention. Our third principle is a 

mechanism of attentional engagement. It is only when 

attention is engaged at a subsystem that it can assess the 

salience of items passing through it. Furthermore, attention 

can only be engaged at one subsystem at a time. 

Consequently, semantic processes cannot glance at an 

incoming item, while looking at and scrutinising another. 

This constraint will play an important role in generating a 

blink in our models. When attention is engaged at a 

subsystem, we say that it is buffered (Barnard 1999). (In the 

context of this paper, the term buffer refers to a moving 

focus of attention.) Thus, salience assignment can only be 

performed if the subsystem is buffered and only one 

subsystem can be buffered at a time as shown in Figure 2a. 

The buffer mechanism ensures that the central attentional 

resources are allocated serially, while items pass 

concurrently, i.e. all items throughout the overall delay-line 

are moved on one place on each time step. 

How the Model Blinks. In this model, words are expressed 

by their roles in Barnard et al’s blink task, i.e. background, 

target, and key-distractor, which has two subtypes: high 

salient and low salient. The buffer movement dynamic 

provides the underlying mechanism for the blink. 

Initially, Implic is buffered as shown in Figure 2a. When, 

in response to the key-distractor being found implicationally 

salient, the buffer moves from Implic to Prop, salience 

assessment cannot be performed on a set of words (i.e. a 

portion of the RSVP stream) entering Implic following the 

key-distractor. So, when these implicationally uninterpreted 

words are passed to Prop, propositional meaning (which 

builds on implicational meaning) cannot be accessed. Target 

words falling within this window will not be detected as 

implicationally salient and thus will not be reported. 

There is normally lag-1 sparing in key-distractor AB 

experiments, i.e. a target word immediately following the 

key-distractor is likely to be reported. This arises in our 

model because buffer movement takes time, hence, the word 

immediately following the key-distractor may be 

implicationally interpreted before the buffer moves to Prop.  

When Prop is buffered and detects an implicationally 

uninterpreted word, the buffer is passed back to Implic, 

which can assign salience to its items again. After this, 

target words entering the system will be detected as 

implicationally and propositionally salient and thus will be 

reported. Hence, the blink recovers. 

Generating a Blink Curve. Humans though perceive 

information imperfectly; as a result, salient items may be 

missed. In the current model, we assume that the ease of 

detecting that the key-distractor is implicationally salient 

determines the depth of the blink curve. We work here with 

what we call “intrinsic probabilities of identification”, i.e. if 

an item (distractor or target) is presented alone in an RSVP 

stream, what is the probability that it will be seen. Thus, 

)( rgTaDistP
imp

∧  is not the probability that both the key-

distractor and target are seen in an AB setting, but rather the 

probability that both would be seen in two separate idealised 

“single target events”. The intrinsic probability of judging 

targets to be implicationally salient, 67.0)( =rgTaP
imp

, is set 

by the baseline performance of human subjects. (Barnard et 

al stated that humans correctly report the target’s identity on 

average on 67% of target only trials; furthermore, at high 

lags, the blink curve also recovers to this baseline 

performance (Barnard, Scott et al. 2004).) We assume that 

the intrinsic probability of detecting a background word as 

implicationally salient, )(BackP
imp

, is zero. (This sort of 

error is so rare as to be effectively zero.) The intrinsic 

probability of detecting a key-distractor as implicationally 

salient is )(HSP
imp

 in the high salient condition and 

)(LSP
imp

 in the low salient condition. According to our 

model, the likelihood of correct report at the deepest point in 

the blink curve reflects the joint probability of missing the 

key-distractor and detecting the target. This is because the 

way the model is constructed, there is indeed no other way 

that a target can be detected during the blink. From Figure 

2b, 34.0)( =∧¬ rgTaHSP
imp

 and 54.0)( =∧¬ rgTaLSP
imp

 

can be obtained. We assume detecting targets and the key-

distractors are independent, in particular, in both cases we 

assume the buffer is at Implic when the assessment is made. 

So, 49.0)( =HSP
imp

 and 19.0)( =LSP
imp

. 

This calculation quantitatively determines how the model 

generates a blink curve. As a reflection of the relatively high 

level of abstraction of this model, randomness is imposed 

globally and externally using a convolution. This technique 

does not require specification of either the dynamics or the 

source of noise inside the model. As a result, assumptions 

about the internal structure of the system are minimised and 

also the number of simulation runs is reduced. Thus, we 

convolve Gaussian-distributed noise (GDN) with the (noise 

free) simulation results. We also gradually increase the 

deviation of the GDN by serial position, i.e. the GDN is 

narrower at earlier lags and broader at later lags. We call 

this a convolution with sliding noise. (Note, we explored 

simpler convolution strategies, but none of these generated a 
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suitable blink curve, see (Bowman, Su et al. 2006) for 

details). The intuition behind this approach is that there is 

less noise in earlier phases of processing than in later phases 

of processing, which influence blink onset and recovery 

respectively. Application of such a convolution with sliding 

noise results in a good fit to the human data as shown in 

Figure 1c. Note, our extensionalist model achieves this blink 

curve asymmetry by setting the GD shape parameter, which 

determines how skewed it is from a normal distribution. 

In our simulations, the meaning of a target word can be 

processed to three different degrees, which, we argue, 

reflect different types of response. Words that are both 

implicationally and propositionally fully interpreted can be 

reported correctly with their identity. Some target words can 

be implicationally fully un-interpreted, reflecting complete 

unawareness of the presence of target words, i.e. the “No” 

responses. Finally, some target words can be partially 

processed, reflecting the “Yes” response. 

The resulting percentages of correct report of target 

identities, “No” responses and “Yes” responses are shown in 

Figure 1c. These graphs also illustrate the difference in 

performance between the high and low salience conditions. 

The results are consistent with the experimental results from 

humans (Barnard, Scott et al. 2004) shown in the same 

graph. Moreover, the ratio between low and high salient 

key-distractor intrinsic probabilities of identification is 

39.049.0/19.0 ≈ , which is similar to the ratio of the depth 

parameters (0.44) in the previous model. 

Intensionalist Model – LSA 

In previous models, parameters were derived from human 

performance on the AB task and assumptions about the 

internal structure were minimized. However, in this model, 

word meanings are represented using Latent Semantic 

Analysis (LSA) (Landauer and Dumais 1997), which was 

developed outside the AB. In this sense, this model’s key 

parameters were constrained by a general theory that will be 

used to explain the intrinsic probability and the depth 

parameter in our previous models.  

We hypothesize that a word is assigned to be salient if the 

semantic distance (an LSA cosine) between the word and 

the target category is smaller than a specified threshold. As 

shown in Figure 2c, the target words are within the 

propositional salience threshold. Hence, they are both 

implicationally and propositionally salient. On the other 

hand, background words are outside the implicational 

salience threshold. Hence, they are both implicationally and 

propositionally unsalient. Key-distractors can be either 

implicational salient or unsalient. However, they cannot be 

propositionally salient. Only job words can be reported and 

only implicationally salient key-distractors can cause blinks.  

In this model, the depth of the blink curve depends on the 

percentage of key-distractors above the implicational 

threshold. We calculated the LSA cosines in relation to the 

meanings: generic human, generic occupation, generic 

payment, generic household and nature categories (Barnard, 

Scott et al. 2004). Then, we integrated these cosines as a 

weighted sum of these five LSA values. Effectively, we 

"skew" the LSA space according to the extraction of 

implicational meaning. The five weights characterise this 

skewing, reflecting the relative emphasis that the 

implicational schema puts on each of the five dimensions. 

We constructed a two layer neural network to determine 

these weights. The input layer contained five neurons, one 

for each of the five categories. The output layer was a single 

neuron. We trained the network using all the words we used 

in the AB experiment. The learning algorithm used was the 

delta rule (O'Reilly and Munakata 2000). The inputs were 

LSA cosines and the expected output was 1 for targets and 0 

for non-targets. The learning finished when the weights 

settled, i.e. their changes were smaller than a given value 

(0.0001). Using the trained network, we calculated the new 

LSA values for all words. The results were: 52.5% of high 

salient and 22.2% of low salient key-distractors were 

implicationally salient. Nature words were mainly 

implicationally unsalient, except for one word (so, we 

excluded this word from our simulation). 63.4% of target 

words were implicationally salient. Interestingly, the ratio 

between low and high salient key-distractor LSA 

calculations was 42.05.52/2.22 ≈ , which is consistent with 

the depth parameters (0.44) and intrinsic probabilities (0.39) 

derived from our previous model. 

As a reflection of the fact that this is a more concrete 

model than the previous ones, convolutions are not used 

here. Instead, different amounts of variance are added to the 

buffer movement delay at different stages, i.e. less variance 

is added to the delay of buffer movement from Implic to 

Prop (which regulates blink onset) than the delay of buffer 

movement in the opposite direction (which regulates blink 

offset). Our extensionialist and intermediate models justify 

this, i.e. GD is a skewed distribution and the sliding noise 

ensures that the variance increases by lag. Partial responses 

are modelled in a similar way as the intermediate model. 

The simulation results are shown in Figure 1d. Full details 

of these models can be found in (Bowman, Su et al. 2006). 

Conclusion 

Attentional Capture by Meaning. We have provided a 

concrete account of attentional capture by meaning and the 

temporal dynamics of that process. A number of key 

findings have arisen from our modelling. Firstly, we have 

provided further evidence for the applicability of LSA in the 

context of attentional capture by meaning. That is, we have 

shown that a model that measures semantic distance using 

LSA can reproduce the key-distractor blink and semantic 

modulations of blink depth. Furthermore, we have shown 

that these LSA calculations are consistent with more 

extensionalist approaches in which the difference in 

observable behaviour is captured by either the GD depth 

parameter, or intrinsic probabilities of ascribing 

implicational salience derived directly from the blink curve. 

Importantly, in all three cases, i.e. GD depth parameter, 

intrinsic probabilities of implicational salience and LSA 

measures of implicational salience, the ratio between high 
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and low salience has been almost identical (around 0.42). 

This is an illustration of how multilevel modelling can 

provide converging evidence for a theoretical position. 

Secondly, we have clarified the characteristics of 

attentional redeployment when meaning captures attention. 

In particular, at an extensionalist level, a skewed 

distribution was used to characterise the asymmetry of the 

blink curve. At an intermediate level, the need to use a 

convolution with sliding noise suggests that temporal noise 

increases systematically by serial position. At an 

intensionalist level, this sliding noise is realised as variance 

in the buffer movement delay. This finding suggests that 

there is less variance in extracting semantic gist (at Implic) 

than extracting referential meaning (at Prop), since Implic 

does not have to fully analysis and generate a concrete 

referent, which is likely to be affected by many variables. 

This consistency is again an illustration of converging 

evidence from different levels of modelling. 

Cognitive Architectures. The general applicability of our 

models is enhanced since the approach can be placed within 

the context of a broad cognitive theory: the Interacting 

Cognitive Subsystems (ICS) architecture (Barnard 1999). 

Distributed control is inherent in ICS: subsystems are 

independent components, which interact through exchange 

of data representations over communication channels 

(Barnard 1999; Bowman and Faconti 1999; Barnard and 

Bowman 2004). ICS asserts that cognition emerges as the 

product of the interaction between a set of autonomous 

subsystems. Both the delay-line and buffering concepts that 

we use have their roots in ICS. However, most significantly, 

the implicational - propositional distinction reflects ICS' 

dual-subsystem central engine (Teasdale and Barnard 1993). 

Multi-level Cognitive Modelling. We have provided a case 

study for how multilevel modelling can be applied in the 

cognition setting. Viewing systems from different 

perspectives and levels of abstraction is just a useful 

exploratory method for understanding systems, and it is one 

that the cognitive modelling domain should not miss.  
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