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Abstract—Time resolved imaging techniques, such as MEG and 
EEG, are unique in their ability to reveal the rich dynamic 
spatiotemporal patterning of neural activities. Here we propose a 
technique based on spatiotemporal searchlight Representational 
Similarity Analysis (RSA) of combined MEG and EEG (EMEG) 
data to directly analyze the multivariate pattern of information 
flow across the brain. This novel technique can recognize fine-
grained dynamic neural computations both in space and in time. 
A prime example of such neural computations is our ability to 
understand spoken words in real time. A computational 
approach to these processes is suggested by the Cohort Model of 
spoken-word recognition. Here we show how spatiotemporal 
searchlight RSA applied to source estimations of EMEG data can 
provide insights into the neural correlates of the cohort model 
within bilateral frontotemporal brain regions. 
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I.  INTRODUCTION 
Multivariate Pattern Analysis (MVPA) has been 

successfully applied to fMRI (e.g. [1][2][3]) and to (quasi) time 
series data [4]. Unlike mass-univariate approaches such as 
SPM [5], MVPA is based on the pattern information that is 
naturally embedded in multi-channel recording of neural 
activations. Application of MVPA to time resolved imaging 
techniques (e.g. MEG and EEG) is, however, still very limited.  

A particular type of MVPA is Representational Similarity 
Analysis (RSA) [6], which has been successfully applied to 
neuroimaging data from several different modalities. For 
instance, RSA has been used to relate the blood-oxygen-level 
dependent (BOLD) responses from human inferior temporal 
cortex (IT) to single-cell recordings (averaged spike rate over 
time) from monkey IT [6]. Here we extend RSA to apply to 
whole-brain source estimations of combined MEG and EEG 
(EMEG) data. This novel technique allows us to identify 
spatiotemporal neural signatures on the basis of the similarity 
structures they represent. To do this, we have generalized the 
spatial searchlight used in fMRI analysis [2], by adding a 
sliding time window to accommodate the additional temporal 
dimension. This spatiotemporal searchlight RSA is capable of 
generating systematic accounts of complex parallel distributed 
neuro-computational processes, operating on millisecond 
timescales. A prime example of such complex processes is 
characterized in the cohort model of spoken-word recognition 
[7][8][9]. This model describes how auditory speech input is 
mapped onto stored lexical representations in real-time. 
Specifically, when a speech segment enters the system, it 
activates a virtual cohort of word units, which code lexical 

representations that begin with this speech segment. These 
activated units compete to provide the best match to the 
accumulating input. As more inputs enter the system, the 
intended word should emerge as the best fitting candidate. 

It is apparent that such complex dynamic processes involve 
large distributed neural networks working in parallel as the 
words are heard. A major challenge for cognitive neuroscience 
is to develop methods for characterizing these dynamic 
spatiotemporal patterns in EMEG data recorded while 
participants are listening to spoken language. In this paper, we 
will describe our methods for spatiotemporal searchlight RSA 
and show how they can be applied to capture cohort-based 
analysis processes as a spoken word is being heard. 

II. SPATIOTEMPORAL SEARCHLIGHT RSA 

A. The Representational Dissimilarity Matrix (RDM) 
The first step in the RSA process is the computation of 

similarity structures that express the dynamic patterns of neural 
activation over space and time. The primary data type that 
encodes this similarity structure is the representational 
dissimilarity matrix (RDM). Each entry in the RDM is a 
correlation distance (e.g. one minus the correlation value) 
between activation patterns elicited by a pair of experimental 
conditions (or stimuli) within a specific experimental 
condition. As shown in Figure 1, elements on the main 
diagonal of this matrix are zeros by definition. In the off-
diagonal parts of the RDM, a large value indicates that the two 
conditions have elicited distinct spatiotemporal activation 
patterns, and vice versa for small values. RDMs computed 
using this method are symmetric about the main diagonal. 
Subsequent computations are therefore only performed on the 
lower-triangle portion of the matrix. RDMs can either be brain-
data RDMs reflecting recorded brain activity, or model RDMs 
(see below) expressing specific theoretical hypotheses about 
the properties of this activity. 

B. Moving Spatiotemporal Searchlight 
Signals in EMEG source space have a complex spatial and 

temporal distribution. In addition, the signal-to-noise ratio 
(SNR) is low in a single EMEG time series. To increase SNR, 
the conventional Event Related Potential (ERP) approach 
reduces noise that is not time-locked to the stimuli by 
averaging across many trials and recordings from multiple 
channels are often averaged. In contrast, RSA and other 
MVPAs can potentially increase the level of detectable signal 
by integrating information from multiple channels using more 
sophisticated multivariate statistics, which extract additional 
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information from the patterns than simply the mean amplitude 
of all channels. This advantage of MVPA over its univariate 
counter-parts has been demonstrated in the field of fMRI. We 
argue that this is also true for EMEG, and have extended the 
concept of spatial searchlight developed for fMRI to include an 
extra temporal dimension. This is done by combining a spatial 
searchlight with a sliding time window under the assumption 
that neuro-cognitive representations are realized in the 
continuous spatiotemporal patterns of EMEG data. 

 
Figure 1.  Computing brain-data RDMs from spatiotemporal patterns 

Specifically, at each spatial location (or vertex) on the 
source estimated cortical surface (see Section III), the 
searchlight covers a hexagonal cortical patch (radius = 20 mm), 
which includes 128 vertices. The searchlight also extends in 
time for 20 ms – a time period chosen on the basis of estimates 
of the timing with which neural circuits are updated [10]. The 
time step of the sliding window is set to 5 ms. The RDM 
computed for each spatiotemporal searchlight location is 
assigned to the center vertex of the hexagon. We allow the 
searchlight to overlap in space and in time, on a whole-brain 
basis across the length of the recording epoch for each word, 
resulting in a brain-data RDM at each vertex and each time 
point. Sampling with overlapping spatiotemporal searchlights 
enables us to detect distributed and transient representations 
that might otherwise straddle the boundary between adjacent 
cortical patches or successive temporal bins and fail to be 
analysed as a single pattern.  

C. Comparison of Brain-data RDMs to Theoretical Models  
At the second step, theoretical models are also represented 

by RDMs, which define hypotheses about the data. Such 
hypotheses can either be described informally, for example, 
images of objects can be categorized as either living or 
nonliving, or they can be formally derived from a 
computational model. A computational model can be a set of 
closed-form equations that compute certain properties of the 
stimuli, such as the power in a particular frequency band within 
a sound sequence. However, more sophisticated cognitive 
models can also be used, e.g. the distributed representation in a 

connectionist network can form the basis of model RDMs. 
Here, based on the cohort model, we computed a function for 
each word in the experiment (see Section III) describing the 
dynamic change of cohort size over time. We then derived a 
model RDM from these functions by computing pair-wise 
cross correlation distances between them (see Figure 2). 
Finally, the model RDM is compared to the brain-data RDMs 
by computing a Spearman correlation as the searchlight moves 
in space and in time. The output of the searchlight mapping 
indicates when and where in the brain the model RDM fits to 
the observed patterns of neural activity. The Spearman 
correlation value (�) is assigned to the center vertex at each 
searchlight testing point. This results in a spatiotemporal �-map 
for each participant.  

 
Figure 2.  Computing a theoretical model RDM based on the cohort model 

(film and fried are examples of stimuli used in the experiment) 

D. Group Statistics 
At the group level, one can choose between fixed-effects 

and random-effects tests. Here we use a random-effects test, in 
the form of a one-sample t-test performed across subjects over 
their �-maps, resulting in a group t-map that summarizes the 
effect across the group. Both the �-map and the group t-map 
are descriptive statistical maps, from which we can draw 
inferences. However, in the source estimations of EMEG data, 
there can be tens of thousands of vertices (here we down-
sampled to 10,242 vertices per hemisphere) multiplied by 
hundreds of time points. The descriptive statistical maps will 
therefore contain very large numbers of individual 
comparisons. This creates a massive multiple-comparisons 
problem, potentially resulting in high proportions of false 
positives. In the next section, we propose a nonparametric 
correction method based on cluster-level randomization testing, 
from which we can derive a p-value, while controlling the 
false-positives rate across the whole brain. 

E. Correction for Multiple Comparisons 
Most standard statistical tests, such as t- or F-tests, require 

assumptions to be met about the underlying distribution. 
However, these assumptions do not always hold in 
neuroimaging, in particular when certain nonstandard statistics 
are used. Such nonstandard statistics include classification 
accuracy derived from MVPA or different distance measures 
used in RSA and other machine-learning approaches. A 
versatile approach that applies to such statistics is 
randomisation testing [11][12][13]. Here, the multiple-
comparisons problem in RSA for EMEG is addressed by 
randomisation testing of cluster-level statistics. This controls 
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for false positives arising from multiple comparisons without 
making any assumptions about the distribution of the data. The 
procedure is as follows. 

From the previous step, we obtain a map of summary 
statistics, such as a �- or t-map from the group. A primary 
cluster-forming threshold is applied to these maps. The primary 
threshold controls the relative sensitivity of the analysis to low, 
but extended versus high, but focal effects. In this paper, the 
primary threshold is chosen so as to select the top 5% of all �-
or t-values across the brain and across all time points. After 
applying the primary threshold, clusters are identified by 
spatiotemporal contiguity. We allow the cluster to travel in 
space between different time points. From each cluster, a 
cluster-level statistic is calculated as the exceedance mass [14] 
across space and time. We call these clusters observed clusters. 

A key step for nonparametric testing is the simulation of the 
null distribution. In order to control the family wise error rate 
for our spatiotemporal maps, we need to simulate the 
distribution of map-maximum cluster statistics under the null 
hypothesis that there is no difference between any conditions in 
the experiments. Thresholding the null distribution of map-
maximum cluster statistics to select the top 5%, will ensure that 
we will have a risk of merely p = 0.05 of detecting any cluster 
as significant if the null hypothesis is true. We simulate the null 
hypothesis by randomisation of the condition labels, based on 
their exchangeability under the null hypothesis [13]. In the 
fixed-effects test, condition labels in the brain-based RDMs are 
randomly permuted 1,000 times, and the group �-map is 
recomputed each time. In the random-effects test, the sign of �-

maps from each subject are randomly flipped 1,000 times and a 
group t-map is recomputed for each random flipping. This is 
based on the assumption that the � values are symmetrically 
distributed about zero under the null hypothesis. 

For each map generated by simulation, we applied the same 
primary threshold used to form observed clusters to identify 
simulated spatiotemporal clusters. We compute the cluster-
level statistics for all simulated clusters, and then build the null 
distribution, by selecting the cluster from each run of the 
simulation with the largest cluster statistics. A corrected p-
value is given to an observed cluster by looking at where its 
cluster statistics locate in the distribution of simulated cluster 
statistics. This procedure controls the false-positives rate for 
the whole brain and whole time period.  

III. EXPERIMENTAL DETAILS 
17 healthy, right-handed native English speakers have 

participated in the experiment. Participants listened passively 
to English words (e.g. fried, film, dream) and occasionally 
performed a 1-back memory task. Combined MEG and EEG 
data was collected at the MRC Cognition and Brain Sciences 
Unit using a 306-channel Vectorview MEG and 70-channel 
EEG system. After removing artifacts, trials were aligned to the 
onset of the last phoneme of the word, which was set as time 
zero. The time window of interest was defined as the period 
from 200 ms prior to the alignment point to 200 ms after it. 
Baseline correction was based on a 100 ms window preceding 
the time window of interest. MRI images were obtained on a 
3T Siemens Trio with 1 mm isotropic voxels. From the MRI 

Figure 3. (A) Significant clusters showing brain areas that carry information about cohort competition over space and time. (B) Effect time courses for individual 
brain areas. MTG- middle temporal gyrus, STG – superior temporal gyrus, INS – insula, HG – Heschl’s Gyrus, IFG – inferior frontal gyrus.  

 

(A) 

(B) 
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data, a representation of the cerebral cortex was constructed 
using FreeSurfer. The forward model was calculated with a 
three-layer Boundary Element Model (BEM) using the outer 
surface of the scalp as well as the outer and inner surfaces of 
the skull identified in the anatomical MRI. Anatomically 
constrained source estimations were created with Minimum-
Norm Estimation (MNE) [15] combining MRI, MEG, and 
EEG data. 

IV. RESULTS 
Figure 3 (A) shows the extent to which the brain-data 

RDMs from the brain fit the model RDM. There are significant 
clusters in both hemispheres after correcting for multiple 
comparisons (random effect, p < 0.001). The results of 
spatiotemporal searchlight RSA are effectively information-
rich movies. To give a summary overview of the effects, the 
top panels in Figure 3 (A) show the spatial distribution of 
significant clusters averaging across each 50 ms period. The 
bottom panel in Figure 3 (A) shows the averaged t-values over 
the significant clusters by hemisphere, which provides a global 
view of the temporal evolution of the effects. Even at this 
coarse level, we can see that the left hemisphere responds to 
cohort competition as early as 125 ms prior to the alignment 
point, and that the effects on the right occurred around 100 ms 
later than on the left. 

Figure 3 (B) unpacks the global view of the results into 
several key brain areas (anatomically defined using FreeSurfer) 
that are critical to lexical processing. In general, effects were 
first shown in bilateral temporal regions (MTG, STG), and then 
in left inferior frontal regions (IFG). The early effects in MTG 
and STG indicate a rapid access to lexical information and 
arguably reflect the activation of neural systems engaged by the 
presence of cohort competition. The later effects in left IFG, 
beginning at around -40 ms, may reflect neuro-cognitive 
decision processes associated with the selection of the intended 
words from among multiple competing lexical candidates. 

V. CONCLUSIONS 
In this paper, we have introduced a novel approach to the 

analysis of spatiotemporal patterns in EMEG source space 
based on searchlight RSA. This method can capture fine-
grained dynamic neural computations in the brain, and at the 
same time can do so on a large scale – encompassing the whole 
brain. We described nonparametric procedures that address the 
spatiotemporal multiple-comparisons problem. This represents 
a significant advance over current applications [16], which 
largely use techniques first pioneered some 40 years ago in the 
studies using MVPA for EEG analysis [17]. In addition, whole 
brain source analysis, which is arguably the neuroscientifically 
preferable approach, is not used routinely (though see [18]). 

The ability to directly analyze pattern information in both 
space and time from neural activity in the brain enables us to 
generate and validate computational models and cognitive 
theories in a natural and informative way. The RDM 
encapsulates the similarity structure of the patterns of variation 
in the EMEG signals, and provides an abstract means of 
characterising neural activity. As shown in our study of aspects 
of the cohort model (a computational account of spoken word 

recognition), RSA is able to closely relate dynamic patterns at 
the neuronal level, measured electrophysiologically, with 
patterns derived from higher-level cognitive theories. In 
particular, we have identified a bilateral neural network and its 
temporal evolution in frontotemporal regions that supports the 
processing of cohort-based spoken word recognition. 
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