
Cognition, Concurrency Theory and

Reverberations in the Brain: in Search of a

Calculus of Communicating (Recurrent) Neural

Systems
Howard Bowman

Centre for Cognitive Neuroscience and Cognitive Systems
School of Computing, University of Kent, Canterbury, Kent, UK

hb5@kent.ac.uk

Li Su
Department of Experimental Psychology, University of Cambridge, Cambridge, UK

Medical Research Council Cognition and Brain Sciences Unit, Cambridge, UK
ls514@cam.ac.uk

Abstract

We consider whether techniques from concurrency theory can be applied in the area
of Cognitive Neuroscience. We focus on two potential applications. The first of these ex-
plores structural decomposition, which is effectively assumed by the localisation of function
metaphor that so dominates current Cognitive Neuroscience. We take concurrency theory
methods, especially Process Calculi, as canonical illustrations of system description nota-
tions that support structural decomposition and, in particular, encapsulation of behaviour.
We argue that carrying these behavioural and notational properties over to the Cognitive
Neuroscience setting is difficult, since neural networks (the modelling method of choice)
are not naturally encapsulable. Our second application presents work on verifying stability
properties of neural network learning algorithms using model checking. We thereby present
evidence that a particular learning algorithm, the Generalised Recirculation algorithm, ex-
hibits an especially severe form of instability, whereby it forgets what it has learnt, while
continuing to be trained on the same pattern set.

1 Introduction

Historically, cognitive psychology has been significantly influenced by computer science in gen-
eral and theoretical computer science in particular. Obvious examples of this interplay would
include the following. (1) Computational logic has occupied a central position in symbolic the-
ories of thought, e.g. Johnson - Laird’s Mental Models [1], Fodor’s criticism of connectionism
[2] or, more broadly, production system architectures of mind [3]; this is the Good Old Fash-
ioned Artificial Intelligence (GOFAI) tradition. (2) In consideration of cognition, recourse has
often been made to computability and limits thereof, e.g. Penrose’s argument for the incom-
putablity of consciousness [4], the perspective that brains are uninteresting - just “arbitrary”
Turing complete computational devices [2, 5] and “functionalist” perspectives on consciousness
[5]. (3) Indeed, in original conception, the term cognitive was explicitly coined (in opposition
to behaviourism) with reference to (symbolic) computational explanations of thought [6].

Neuroscience has also traditionally been influenced by computer science, but more in respect
of subsymbolic and statistical learning techniques, e.g. the linking of Hebbian learning to
principal component analysis [7] or neural coding schemes to Kohonen maps [8].

It might then seem that more recent computer science methods, arising in the domain
of formal methods and concurrency theory, e.g. [9-11], could also make a contribution to
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understanding mind and brain. Indeed, the brain is clearly a massively parallel system in
which (despite proposed roles of the thalamus as a global synchroniser) control, at a physical
substrate level, would seem to be broadly distributed. In addition, many theories of cognition
are explicitly parallel and distributed, e.g. Barnard’s Interacting Cognitive Subsystems [12]
and Baddeley and Hitch’s working memory model, where for instance, the Phonological loop
and Visual Spatial Sketchpad evolve in simultaneous independence [13]. In particular, the
pervasiveness of parallelism and distribution suggests that the techniques developed under the
concurrency theory banner should be of great relevance to the current cognitive neuroscience
project, which explicitly seeks to relate mind to brain [14]. This is the issue we consider in this
paper.

A point to note though, is that the requirement to explicitly consider how the brain might
realise particular cognitive functions, suggests a level of neurophysiological realism beyond
that offered by the most basic traditional connectionist models, e.g. [15]. One such aspect
of realism that has major consequences for computational complexity is recurrence. That is,
the brain is densely recurrently connected. For instance, in addition to major “bottom-up”
processing pathways, i.e. from sensory systems, there are also many “top-down” projections,
from hierarchically higher areas back down towards sensory regions. Although there are trade-
offs in all abstraction choices, modelling that abstracts away this mechanistic complexity risks
identifying models that could not plausibly obtain in a real brain.

The practical consequences of faithfully incorporating recurrence in neural models are
though severe. The dynamics of bidirectional neural networks are massively more complex
and difficult to characterise than unidirectional networks. In particular, the combination of
nonlinear activation dynamics and bidirectionality makes confirming the stability of nontrivial
recurrent networks a serious analytical undertaking, e.g. see [16] for a verification of stability
of a model of V1 (i.e. visual area one) containing recurrence.

In this setting, we consider two particular ways in which concurrency theory might contribute
to the cognitive neuroscience project, with others highlighted in the discussion. These two areas
are as follows.

1. Structural decomposition in architectural theories of mind and brain.

2. Verification of stability in recurrent neural models.

We consider these in turn.

2 Structural Decomposition

2.1 Decomposition in Concurrency Theory

One of the foundational observations of concurrency theory, and particularly process calculi,
was of the noncompositionality of first generation formalisms for specifying concurrent and
distributed systems. For instance, Milner criticised Petri Nets in this respect [17]. The key
issue being that Petri Nets are structurally flat: one cannot explore them isolated-component
by isolated-component and accordingly one cannot, at least not directly, construct systems
encapsulated-component by encapsulated-component. Thus, when a new component is added
to an existing Petri Net, the entire Net needs to be redesigned. The response inherent in process
calculi, was to introduce a parallel composition operator, which allowed arbitrarily complex
components with their own distinct “thread of control” to explicitly execute in parallel [10, 18,
19]. This was the origin of the notion of a process.
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Indeed, concern for the challenges of system and software engineering, especially those asso-
ciated with the problem of scale, were to the fore in the design of process calculi. That is, the
basic operators and semantic underpinnings of these notations were explicitly devised to support
the specification and design of large parallel and distributed systems. Particular examples of
this consideration include definition of refinement relations [9, 10, 20] and more recent work on
viewpoints-based system development [21, 22]. Most significantly, though, there was a specific
consideration for the incremental (stepwise) description and, ultimately, construction of such
systems. This can be seen in the principal operators of a process calculus such as LOTOS [10,
23], with similar constructs being present in CSP [9], CCS [18] and ACP [24]. For example, in
the manner previously suggested, the LOTOS parallel operator composes separately threaded
processes, subject of course, to synchronous message passing communication; hiding conceals
the internal details of a process’s implementation, isolating that implementation and enabling
specifiers to preserve a process’s behaviour when placed in a context; and interaction between
components is explicitly controlled through gate lists, which effectively prescribe interfaces of
allowable communication. As an illustration, the top-level specification of the protocol in Figure
1, would directly reflect its component structure, as follows,

hide receiveAck, send, receive, sendAck in

(Sender [get, receiveAck, send]

|||

Receiver [put, receive, sendAck])

|[receiveAck, send, receive, sendAck]|

DupMedium [receiveAck, send, receive, sendAck]

where, ||| denotes independent parallel composition, i.e. with no interaction between
composed processes and |[G]| denotes parallel composition with synchronous interaction on all
gates in G.

As a result of these features of Process Calculi, (process) components can be encapsulated,
preserving their behavioural essence across contexts. For example, a LOTOS specification of a
stop-and-wait protocol remains a stop-and-wait protocol whatever context it is composed with.
True, there are contexts in which the protocol might be placed that would yield degenerate
behaviour, e.g. deadlock or livelock, but that emergent behavioural outcome does not imply an
alteration to the protocol’s underlying behaviour; interaction with the protocol is in error, but
the underlying behaviour of the protocol is unchanged.

Another aspect of process calculi that is so natural we almost do not notice its presence, is the
possibility to nest components to arbitrary depth, i.e. not just decomposition into components
at one level, but true (depth-unconstrained) hierarchical decomposition. For instance, the
decompositional structure inherent in a communication protocol, such as that in Figure 1,
would be directly reflected in the structure of a LOTOS specification of such a protocol, e.g.
c.f. [10]. For instance, process DupMedium would itself contain two processes: Medium and
AckMedium.

Clearly, such a capacity to keep on nesting and decomposing to whatever level is required,
without reaching an artificial decompositional bottom-out, is critical when constructing large
scale systems. That is, there is flexibility in system construction, with decompositional “brick-
walls” avoided.

In addition to a calculus’ operators, much theory development and debate has concerned
what could broadly be called the compositionality properties of process calculi. For example,
equivalences and preorders have been sought that are congruences (respectively precongruences)
over a calculus’ operators [10, 18]. This ensures that a semantic relationship between two
processes (e.g. their equivalence) is preserved when they are placed in the same context. For
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Figure 1: A communication protocol

instance, for any context C[.], an equivalence ∼ is a congruence if when P ∼ P ′, C[P ] ∼ C[P ′].
Incremental system development is particularly feasible in the presence of congruence relations,
since relationships holding at the level of component parts are preserved when substituted into
a composite whole.

Our basic point then, is that techniques available in concurrency theory, and in fact through-
out computer science, are designed with the problem of scale in mind, i.e. with constructs and
characteristics that enable large-scale systems to be described and analysed. The issue being
that to enable big systems to be thought about and designed, there is a need to decompose
into bite-size parts that can be considered in isolation, subject to controlled interaction through
clearly defined interfaces. Such decomposition enables incremental, component-by-component,
system development, providing what might be viewed as an engineering reductionism.

A key final point to note is that the system decomposition enabled in concurrency theory
is not just structural and syntactic, it is also behavioural. That is, when a box is conceptually
placed around a component, the behaviour within that component is encapsulated; in other
words, the basic algorithm the component implements is secured and cannot be altered by
instantiating it in a context. Such behaviour-encapsulating structural decomposition is critical
to enabling incremental (stepwise) design of systems.

2.2 Decomposition in Cognitive Architectures

A number of architectural theories of cognition sit very nicely with the compositionality perspec-
tive of concurrency theory in general and process calculi in particular. One such architecture
is Barnard’s Interacting Cognitive Subsystems (ICS) [12], see Figure 2.

For a full (informal) description of the ICS architecture, see [12], but the point for us
here is that there is clear structural decomposition: the Central Engine component sits within
ICS itself, the implicational (Implic) subsystem sits within the Central Engine, and input
array and transformation components sit within Implic, etc. In addition, subsystems evolve
in parallel and none of them has a global view of the system state. Thus, control is at its
core distributed. In addition, the notion of subsystem found in ICS sits quite naturally with
behavioural encapsulation. That is, interaction between subsystems is through a restricted
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Figure 2: Structural decomposition in Interacting Cognitive Subsystems (ICS). One hierarchical
decomposition path is illustrated by boxes with bold surrounding lines.

set of operations, with internal implementation details hidden and inaccessible from outside a
subsystem.

Indeed, these aspects of ICS have made it a natural candidate for process calculus mod-
elling. Accordingly, portions of the architecture have been formalised in LOTOS and analysed
deductively and through simulation [25-28]. In addition, although not currently complete, there
is no fundamental reason why the entire ICS architecture could not be formalised with this ap-
proach. In particular, an incremental (stepwise) construction using structural decomposition,
in the manner so familiar to computer scientists, is quite feasible.

Although ICS is particularly suitable for concurrency theory formalisation, all models falling
within the symbolic architecture of mind approach (e.g. SOAR [3], ACT-R [29] and EPIC [30])
should be similarly decomposable. Indeed, the symbolic nature of all cognitive modelling within
the Good Old Fashioned Artificial Intelligence (GOFAI) tradition would be expected to make
structural decomposition feasible, whether the unit of decomposition be operations, functions,
modules, objects or processes. For example, an architecture such as SOAR [3] contains a number
of effectively encapsulated and independently evolving parallel components. Figure 3 illustrates
this decomposition; i.e. long-term memory, working memory, perceptual systems and motor
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systems are distinct, state independent, components.

Figure 3: Top-level structure of the SOAR cognitive architecture, as presented in figure 4.15 of
[3].

2.3 Decomposition in the Brain

In physical makeup, the brain also exhibits decompositional structure, with hierarchical nesting.
This is apparent from coarse structural divisions (e.g. into two hemispheres) and cytoarchi-
tecture (c.f. Brodman areas) [14]. The latter subdivision reflects physiological segregation in
the brain; that is, discontinuities in the presentation of tissue identified with in vitro staining
procedures; these might, for example, correspond to transitions in the density or type of con-
stituent neurons. By way of illustration, Figure 4 depicts the coarse decomposition arising from
subdivision of the cortex by lobe and the finer partitioning arising from Brodman areas.

There are also evident finer divisions, such as widespread layering, e.g. the regular six
laminar layout of the cortex [8], or the functional partitioning associated with cortical column
[31], whereby, the neurons in a column orthogonal to the cortical surface, all exhibit similar
tuning, e.g. all respond to the same region of space.

Furthermore, the central metaphor of current imaging neuroscience is exactly localisation
of function, i.e. association of functional characteristics to brain regions, e.g. the hippocam-
pus with formation of long-term memories [8] and the Amygdalar with detection of emotional
salience, perhaps particularly threat [32]. Implicit to this activity is a belief that the brain’s
structural decomposition in physical form, can be married to a rich decomposition of func-
tion, i.e. of behaviour, indeed, what might be described as computation. Effectively (in the
metaphor’s strongest form), a physical reductionism in one-to-one relationship with a functional
reductionism is posited, see Figure 5 for an illustration of this mapping ambition.

Identifying neurophysiological correlates of informally defined cognitive theories (i.e. those
that are effectively defined by diagrams and textual description) is certainly notable. How-
ever, associations between the structural decomposition in (formal) computationally-realised
cognitive architectures and decomposition in the brain could, under the localisation of function
hypothesis, obtain, and would be extremely compelling if convincingly identified; c.f. [33] for
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Figure 4: Left panel: The brain’s lobes. Right panel: Brodman areas.

Figure 5: Mapping cognitive theories to brain regions. On the left here is one of the most
successful theories in cognitive psychology, Baddeley and Hitch’s working memory model [13].
A holy grail of cognitive neuroscience would be to associate components of such a cognitive
theory to, say, Brodman areas.

an attempt to make such an identification. Broadly speaking, it has, though, proved difficult
to empirically verify such associations with current imaging techniques. Indeed, functional
localisation claims, are no more than that and, apart from some well accepted localisations,
particularly those focused on sensory and motor functions (the brain’s peripheral systems, if you
like), there remains considerable debate concerning most localisation hypotheses. Nonetheless,
in terms of our main interest here, functional localisation certainly does represent a very strong
structural decomposition claim, which is at the heart of the Cognitive Neuroscience project.
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2.4 Decomposition and Neural Behaviour

2.4.1 State of the Modelling Art

Neural networks have become the modelling method of choice in the cognitive and brain sciences,
especially when some link to neurophysioloigcal implementation is being claimed. However, it is
important to note that the models developed with this method tend to be restricted in nature.
Specifically, neural models in cognitive neuroscience seem almost exclusively to be small and
very specialised. Admittedly, there is a class of neural models with large numbers of units: hun-
dreds, thousands, or even, tens of thousands; see, for example, the classic “parallel distributed
processing” tradition [15]. However, this scale tends not to be in respect of components (in the
sense being considered here). Such models might, for example, contain thousands of nodes, but
just 3 layers. It is these layers that are the components in the sense being considered here, with
each having a distinct conceptual role in the understanding and construction of the system.
Thus, the field seems swamped with models targeted at a restricted set of cognitive phenomena
in a restricted psychological domain and containing a few layers/components. For example,
Machens et al. [34] presented a neural network model of the functioning of the frontal lobe,
which may well be the most computationally, cognitively and neurophysiologically complex part
of the brain. Indeed, the lobe does hold a significant proportion of the neurons in the brain.
In addition, the paper is published in one of the most prestigious journals, Science. To make
our position clear, we absolutely acknowledge the elegance and important contribution of the
model presented. Our reason for highlighting the Machens et al. model is to illustrate the state
of the art; that is, what is currently possible with available tools. Thus, our criticism is in no
sense with the model itself. In this spirit, it has to be noted that the core model has just two
units and simulates just one experimental finding (a short-term memory experiment on mon-
keys). Such small scale, highly targeted modelling can make major contributions to progressing
understanding of focused scientific questions and is also, in this context, to be preferred under
Ockham’s razor; indeed we have published many such models ourselves, e.g. [35, 36]. However,
in respect of the broad architecture of mind and its realisation in the brain, the contribution
is more limited. In particular, Ockham’s razor allows one to adjudicate between models with
similar explanatory power. Our point is that existing neural models do not really provide an
architectural-level explanation at all; in that context, Ockham’s razor is not a relevant criterion
to apply in the first place. This is the state of the art.

Clearly, it is the same mind that allows us to remember, to plan, to appreciated music and
to comprehend and produce language, amongst many other capacities. However, any sense
that these diverse faculties jointly constrain mind and brain is to a significant extent ignored
by current neural network modelling in cognitive neuroscience.

2.4.2 The Curse of Decompositional Flatness

In this context, it is interesting to consider how large architecture-level neural networks could
be constructed. One might think that a calculus of communicating neural systems could be
developed, in which neural network components would be composed together in the fashion
that processes are in process calculi, see, for example, Milner’s Calculus of Communicating
Systems [18]. Indeed, one certainly could define a syntactic operator to wrap a neural network
up as a component and further operators to wire such neural components together in parallel
or series. However, this would just be syntax and, as motivated by structural decomposition in
concurrency theory, to build systems or models incrementally, one has to be able to consider
behaviour component-by-component. That though, requires certain, if you like, semantic prop-
erties to hold when composing components, the most fundamental of which is encapsulation of
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behaviour: when a stop-and-wait protocol is placed in a context, it stays a stop-and-wait pro-
tocol. This we argue, does not naturally arise in neural networks, and perhaps particularly in
the variety of neural networks that satisfy the neurophysiological realism constraint so central
to cognitive neuroscience.

As an illustration, consider the network in Figure 6 left panel. (Activation equations and
parameter settings are presented in the appendix.) This is a simple Winner-Take-All (WTA)
network; that is, the most strongly excited of the two units will, over time, win the competition,
as reflected by its high activation and low activation of its competitor. Accordingly, the unit
that will win will have the highest sustained net input, i.e. sum across its three weighted inputs,
two inputs of which are extrinsic (i.e. from outside WTA) and the other intrinsic. Excitatory
inputs will push a unit’s net input up, while inhibitory inputs will push it down. Such structures
(with the lateral inhibition relayed through inhibitory inter-neurons) are ubiquitous in the brain
[8].

Figure 6: Left Panel: A winner-take-all network. Dashed arrows are inhibitory, unbroken arrows
are excitatory. Right Panel: Activation dynamics of WTA given constant input, which begins
at time step 20 and remains on from that moment. WTA unit Z is the winner (black/blue line,
with diamonds) and X the loser (grey/red line, with squares). The dynamics before time point
20 reflect prestimulus settling, under which Z and X attain their resting activation level. In
this prestimulus settling period, winner and loser traces follow the same trajectory and are sat
on top of one another.

Such a model might be used in a simulation of a stimulus response task. For example, the two
WTA units would sit in the response pathway, with one corresponding to a left hand response
and the other right. The lateral inhibition between responses (which is intrinsic to WTA) would
reflect that only one response should be made at a time. The excitatory (extrinsic) input links
might carry stimulus evidence for each response, e.g. an arrow stimulus pointing to the right
excites the right response, etc. The inhibitory extrinsic input links might reflect a top-down
bias, e.g. an experimental manipulation of the expectation of left versus right responses, with
the less expected more inhibited. That is, the X response is less expected and thus is inhibited
more. This is due to the 0.2 input, as opposed to 0.1.

Let us view this network, which we call WTA, as a component and assume that all excitatory
input links (which are extrinsic) have the same weight, all inhibitory extrinsic input links have
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the same (negative) weights, and both lateral inhibition links (which are intrinsic) have the
same (negative) weight. We also assume that all inputs are stable; that is they come on (at 20
cycles) and stay on (at the same level) until simulation end. The behaviour of this system is
straightforward and quite as expected. The WTA unit that receives the highest net input (unit
Z), i.e. sum of weighted inputs, wins the competition relatively soon after input starts. This is
shown in the activation dynamics in the right panel of Figure 6.

Now, consider different ways of composing this WTA component with other components.
Here, the four extrinsic links projecting into WTA (two excitatory and two inhibitory) are
viewed as an implicit input interface and the two extrinsic output links (both excitatory) as an
implicit output interface. A simple feed-forward composition would be as in Figure 7.

Figure 7: Two component response model, with a pure feedforward composition. WTA be-
haviour (shown in right panel) is unchanged. Again, the winner unit is Z (black/blue line, with
diamonds) and the loser is X (grey/red line, with squares).

Such a model might arise if component A was a next step in the response pathway. Im-
portantly though, the addition of component A has no affect on the dynamics of component
WTA. Hence, in this feedforward composition context, WTA behaviour remains isolated and
thus, encapsulated. However, consider the composition in Figure 8.

So, we have simply fed the output of component A units back to corresponding component
WTA units, with the inhibitory weight on each link preserved (i.e. from when the link was
an extrinsic input in the two component feedforward model). Thus, half of the WTA input
interface has been bound to A’s output interface. The resulting model, which is now of course
recurrent, also corresponds to a very common structure in the brain. In particular, an ON unit
exciting on OFF unit, which in turn inhibits the ON unit, occurs frequently in neurophysio-
logically detailed models. For example, such opponent processes arise embedded in the three
laminar configuration of units in Dynamic Causal Models for EEG [37]. They also arise often
in more cognitively-prescribed models, such as in the Simultaneous Type/Serial Token model
of temporal attention and working memory [36] and modelling of visual-motor control [35]. In
particular, one might conceptualise the OFF nodes in Figure 8 as a mechanism to terminate
ON node response preparation, when there is a break in feedforward evidence for that ON node,
as discussed in [35].

But the critical point to note here is that, as shown in Figure 8 right panel, rewiring the
inhibition into the WTA units, completely changes the dynamics of WTA. Effectively, “all bets
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Figure 8: Two component response model, with a recurrent composition. WTA dynamics
(right panel) are completely transformed. The activation of WTA unit Z is the black/blue line
with diamonds and the activation of WTA unit X is the grey/red line with squares. The units
of component A have weak inhibitory biases, with strength indicated by point size of dashed
vertical arrows. (Exact values of all weights and parameter settings are documented in the
appendix.)

are off” with regard to the behaviour of WTA; certainly, the emergent dynamics at WTA units
Z and X are no longer obviously winner-take-all.

Although this example is certainly set-up to be a stark, indeed loaded, demonstration of
nonencaspulability, the notion that a focal (in the sense of components) change in a neural
network (here feeding links from A back to WTA) can effect a change in a remote component
(here WTA), is certainly true. Furthermore, once recurrence is present, the perturbance in
behaviour that a remote change might create could be dramatic, even threatening the very
stability of the component.

It is important to note that step changes in neural dynamics can also be obtained without
network restructuring. For example, without the addition of any extra components or the
redirection of projections, which underlay the illustration of Figures 6, 7 and 8, we can regain
stable winner-take-all dynamics, in component WTA. Figure 8 network. Figure 9 shows the
activation dynamics that results from changing the biases in component A, i.e. increasing their
inhibitory effect. Thus, a remote quantitative change, without qualitative (structural) change,
can dramatically alter the dynamics of a component.

Again, there is nothing in fact surprising here; suppressing the units of a component via
strongly inhibitory biases, will clearly reduce that component’s affect onto other components,
which in our example breaks oscillatory couplings. This though once more merely emphasizes
the fundamental argument: by their very nature, components of neural networks are “knitted
together” and cannot obviously be isolated.

The implications of this absence of behavioural encapsulation would seem to be severe.
In particular, incremental construction of large architectural-level neural models of mind and
brain is likely to be extremely challenging, which may explain the dearth of such models and the
emphasis on decompositionally small, highly specialised, models. We call this difficulty the curse
of (behaviour) decomposition flatness: behaviourally, neural models (and particularly those with
recurrence) cannot naturally be segregated into encapsulated components. In other words,
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Figure 9: Two component response model (left panel), with a recurrent composition and strong
inhibitory biases in component A. The dynamics of the WTA component (right panel) have re-
turned to a predictable winner-take-all pattern. The line with black/blue diamonds corresponds
to unit Z and the one with grey/red squares to X.

typically they can only be considered at one compositionally and hierarchically undifferentiated
level, i.e. by analogy with Petri Nets, they are, structurally flat.

2.5 Implications

It seems then that, as formulated in neural networks, the nature of computation in the brain
is substantially at odds with the “reductionism” required when constructing and considering
architectural models of mind and brain. One consequence of this is that addition of components
to such neural models is likely to mandate a complete refit of all model parameters. Effectively,
behaviour can only be explored and calibrated globally. A familiar manifestation of this flatness
is the difficulty in decomposing neural network learning. If one weight in a network is changed,
it, at least potentially, affects every other weight and thus what has previously been learnt by
a network. This irreducibility of weight change is not in fact surprising: one of the reasons for
being interested in neural networks in the first place is that they are global constraint satisfiers.
In neural networks, the properties a number of presynaptic neurons code can be simultaneously
brought to bear on a single post-synaptic neuron; see for example, the joint influence of per-
ceptual evidence and expectation (via extrinsic excitatory and inhibitory input respectively)
on WTA response units (e.g. unit X) in our running example. That is, the activation of an
arbitrary unit is directly constrained by any unit that projects to it and indirectly by any unit
that projects to a unit that projects to it, etc. If such global constraint satisfaction is sought,
it is not surprising that component encapsulation is lost.

This decompositional flatness prompts a number of key questions.

1. How can one construct large, architectural-level, neural network models of cognitive func-
tion, as ultimately required of the cognitive neuroscience project?

2. Is the brain really (behaviour) decomposition flat? If not, how does the (structural)
decomposition evident in the physical makeup of the brain provide behavioural encapsu-
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lation? Is there, for example, an effective interface-interlock between brain components,
perhaps at the level of cortical columns, which protectively isolates component behaviour?

3. Is it even possible to formulate a calculus of communicating neural systems, which is
meaningfully related to neural computation in the brain and, as the term calculus implies,
exhibits any semblance of compositionality of behaviour?

In conclusion then, with respect to decompositional flatness, there does seem to be a conun-
drum at the heart of cognitive neuroscience research. Neuroscientists “informally” conceptualise
the brain as possessing structural decomposition, psychologists “informally” conceptualise the
mind as exhibiting the same characteristic, but the formal (behavioural) glue between the two
- which is neural network modelling - is, it would seem, absolutely deficient in this respect.

3 Verifying Stability in Recurrent Neural Networks

As our two component recurrent model suggests, the dynamics of recurrent neural networks can
be extremely complex and, indeed, they can sit on the fringe of seeming chaos. In this context,
network stability becomes a central concern; that is, can it be determined that a particular
network will obtain a stable equilibrium activation pattern for a specific range of possible inputs?
Identifying analytical solutions to such questions has proved difficult; indeed, it is likely that
in the absence of gross simplifying assumptions, analytical approaches will prove intractable in
many cases. It then becomes interesting to consider whether the verification techniques used in
concurrency theory, and formal methods in general, could be used to determine such stability.
This is what we explore here.

Our focus will be on assessing the stability of learning algorithms for recurrent neural
networks, particularly, neurophysiologically more realistic learning. Most theories of neural
network learning are formulated for rather simple classes of networks and/or under neurophys-
iologically rather unrealistic assumptions. As an example of the latter, the delta rule, and its
generalisation, backpropagation [38], assume error values calculated at the output layer are
relayed back through the network. This is required in order to adjust weights projecting into
hidden layers. Biophysiologically, this suggests a signal that passes from post synaptic neurons,
along dendritic trees, across synapses, down axons, back into presynaptic neurons, and all in the
opposite direction to action potential transmission. Apart from through specialised pathways
arising in specific brain structures, such as in regions of the cerebellum [8], signals that oppose
the main electrochemical transmission direction have not been identified. Accordingly, more
recent supervised learning proposals in cognitive neuroscience have focused on recurrent neural
networks and posited that feedback activation from output towards input regions constrains
hidden units according to the (clamped) teacher signal. That is, error is effectively fed back
through activation, rather than a distinct error value.

A typical learning algorithm of this kind is the Generalised Recirculation (GenRec) algo-
rithm [38], which is related to contrastive Hebbian learning. However, the reliance on feedback
activation, amongst other aspects of neurophysiological plausibility, raises the possibility that
the algorithm may not exhibit good convergence properties, i.e. learning might not be stable.
In particular, our experiences with GenRec made us suspicious that it may suffer an especially
severe form of catastrophic forgetting. It is well known that delta rule and backpropagation
learning can forget what has previously been learnt when trained on a new pattern set. How-
ever, GenRec seems to be able to forget while still being trained on the same pattern set, i.e.
a kind of spontaneous fixed-environment forgetting. Clearly, such an extreme propensity to
unlearn would be a problem for both artificial and natural learning systems.
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In response, we have sought to investigate the stability of GenRec learning using model
checking. Note, although where possible analytical approaches have been used, many evalua-
tions of neural learning algorithms have relied upon simulation, basically repeatedly running
the learning algorithm across different initial weight settings. Each run, though, must neces-
sarily be terminated at some, effectively arbitrary, run length. At least in principle, model
checking enables an exhaustive search of the learning space for a given initial weight setting.
In this sense, the benefit of model checking over simulation in this context is similar to the
traditional formal methods argument for verification over testing in software and systems en-
gineering. That is, testing can reveal the presence of errors, but not certainty of their absence.
Accordingly, simulation could reveal the presence of an instability in learning, but not certainty
of its absence. For a given weight setting, model checking can support such an inference. We
summarise our model checking of GenRec learning here, with full details presented in [39].

In order to enable us to use model checking, we first introduced a coding of neural networks
in communicating automata. This involved a discrete neural update cycle, with activation
transmitted across synchronous message passing channels, which effectively play the role of
neural network links. Neural units were modelled as automata that update their membrane
potential and output activation once the activation on all input links has been sampled. The
resulting neural unit model is depicted in “pseudocode” in Figure 10.

Figure 10: A neuron automaton

Thus, activations over links projecting to a unit are sampled at location Input. Using
these input activations, the unit then updates its own activation (on the Input to Output link)
by calculating excitatory and inhibitory input conductances, membrane potential and (rate
coded) activation. This is followed by transmission of the unit’s activation over output links
at location Output and weight update across its input links at location Learn. The particular
learning algorithm applied determines how weights change, but the neuron automaton structure
remains the same.

Our communicating automata specification enforces a strict update cycle, which has a num-
ber of characteristics. The most important of these is that all our models, whether purely
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feedforward or recurrent, have an ordered series of layers, e.g. Input layer then Hidden layer
then Output. We use the terms predecessor and successor to refer to this series, e.g. Input
layer units are predecessors of hidden layer units. The specification updates unit activations
according to this order. Thus, Input layer units are updated first, then initial (if there are
many) hidden layer, and so on. However, importantly, if the network being specified is recur-
rent, both predecessor and successor units can contribute to the activations received at a neuron
automaton’s Input location. At this point though, only the predecessor units will themselves
have been updated under the current cycle. As a consequence, each unit is updated according
to the current activation of predecessor units and previous cycle activation of successor units.

Our specifications involved a composition of three layers of such unit automata with an
environment automaton, which instantiated patterns on input and output layers and calculated
learning errors. In this framework, we implemented classic Backpropagation (with purely feed
forward activation), Backpropagation over a recurrent network (but with error still propagated
independently of activation) and the Generalised Recirculation algorithm.

We then recast the network into PROMELA, the implementation language of the SPIN
linear-time model checker [40]. The three PROMELA models (BP, BPRec and GenRec) were
then instantiated to learn the XOR problem, which is a small, in terms of number of units
and patterns, but canonically hard learning problem. One might indeed call it the Dining
Philosophers of neural network learning problems!

We were interested in three correctness properties, each of which we formulated in linear-
time temporal logic. These formulae refer to a state property, SUCCESS, which holds when
the activation at each output layer unit is within 0.5 of the desired activation (given by the
teacher pattern). The first formula, 32SUCCESS, expresses “stability”, meaning the system
eventually (i.e. 3) reaches a state from which SUCCESS will always remain (i.e. 2) true.
The second formula, 23SUCCESS, expresses “recurrence”, meaning it will always be the
case that a SUCCESS state can eventually be reached. The third, 3SUCCESS, expresses
just “eventuality”, meaning that from the start state, SUCCESS will eventually be reached.
Clearly, stability strictly implies recurrence, which strictly implies eventuality.

We model checked a range of initial weight settings. As shown in Table 1, GenRec did
indeed perform very poorly on the stability property. Follow-up verifications (presented in [39])
demonstrated that GenRec was more likely to satisfy stability as the sigmoidal function became
shallower, i.e. the gain parameter was reduced, making the function closer to linear. Thus, as
neurons become more discriminating, in the sense that differences in input strength are reflected
in similar sized differences in output activation, their training becomes more stable in a fixed
environment.

4 Conclusion

We have considered the potential for concurrency theory to contribute to modelling and analysis
in cognitive neuroscience. The (behavioural) decomposition flatness of neural networks and
verification of the (environment-fixed) stability of learning algorithms were explored.

Although not considered here, we also believe that concurrency theory abstraction tech-
niques based on reduction of nondeterminism could be applied in cognitive neuroscience; see
our discussion of this topic in [41]. Such methods could plausibly contribute to addressing the
Irrelevant Specification problem, as formulated, for example, by [3].

Our main conclusions are, though, threefold. Firstly, it does seem that decomposition
flatness of neural networks is a barrier to formulating architectural models of mind and brain
in cognitive neuroscience. Secondly, there is potential in using model checking to determine the
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γ = 50 Initial Weights Stability Recurrence Eventuality

BP
0-0.2 100% 100% 100%

0.2-0.4 100% 100% 100%
0.4-0.6 100% 100% 100%
0.6-0.8 0 0 0

0.8-1 0 0 0

BPRec
0-0.2 100% 100% 100%

0.2-0.4 100% 100% 100%
0.4-0.6 100% 100% 100%
0.6-0.8 100% 100% 100%

0.8-1 100% 100% 100%

GeneRec
0-0.2 17% 100% 100%

0.2-0.4 0 100% 100%
0.4-0.6 0 100% 100%
0.6-0.8 0 100% 100%

0.8-1 0 100% 100%

Table 1: Model checking results. Initial weights were sampled at random from the highlighted
range and γ denotes the sigmoidal’s gain. As can be seen, GenRec was very unstable in its
learning of XOR.

stability properties of neurophysiologically prescribed neural models. Thirdly, it may be that
the GenRec learning algorithm exhibits a particularly severe form of instability, in which the
system forgets while learning in a fixed environment.

A Appendix

A.1 Activation equations

We document the activation equations and parameter settings used in our illustration of nonen-
capsulability; see Section 2.4. The basic activation equations are as follows. For an arbitrary
unit i, the net input, i.e. sum of weighted input activation, is given by,

neti(t) =
∑

j∈To(i)

wji· aj(t)

where, t denotes discrete time, i.e. update cycles, To(i) is the set of units that project to
unit i, wji is the weight between units j and i and aj(t) is the current (output) activation at
unit j. A unit’s activation is then calculated through time averaging of the logistic transformed
net input, i.e.

ai(t) = τ ·σ(neti(t− 1)) + (τ − 1)· ai(t− 1)

where, τ is a time constant (taking a value between zero and one) governing the rate of
change, and σ is the standard, sigmoidal shaped, logistic function, i.e.

σ(x) =
1

1 + e−g(x+b)

where, g is the gain, i.e. steepness of the logistic function, and b is a constant bias.
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A.2 Parameter settings

The parameter and weight settings of the neural models discussed in Section 2.4, c.f. Figures
6, 7, 8 and 9, are documented here. We use the following terminology: in layer A, we call the
unit that Z projects to A.top and the unit X projects to A.bottom.

A.3 Parameters fixed across all models

• Time constant (τ): 0.4

• Sigmoidal gain (g) at Z and at X: 1

• Bias (b) at Z and at X: 0

A.4 Weights fixed across all models

• Extrinsic Excitatory to Z and to X: 1

• Extrinsic Excitatory from Z and from X (to A.top respectively A.bottom in Figure 7, 8
and 9): 6

• Inhibitory Intrinsic from Z to X and X to Z: -1

A.5 Parameters Varying Across Models

• Biases (b) in Layer A

– Figure 7 and 8 A.top: -1

– Figure 7 and 8 A.bottom: -2

– Figure 9 A.top and A.bottom: -10

• Sigmoidal gain (g) at A.top and A.bottom (Figure 7, 8 and 9): 3

A.6 Extrinsic Inhibitory

• Figure 6 and 7 inhibitory extrinsic to Z and to X: -3

• Figure 8 and 9 inhibitory from A.top to Z and A.bottom to X: -3
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