

Caroline M. Whiting^{1,2}, Elisabeth Fonteneau^{1,2}, Jana Klimova¹ & William D. Marslen-Wilson^{1,2}

Introduction

Behavioral and neuroimaging evidence suggests that an early stage in visual word recognition is the strictly bottom-up segmentation of the visual input into candidate linguistic substrings (words and morphemes), where this process is blind to the lexical properties of the strings being generated [1,2,3].

The goal of this combined electro- and magneto-encephalography (EMEG) study was to investigate whether these early segmentation processes could be modulated by top-down semantic constraints. Participants saw morphologically complex words (containing a root and suffix; e.g. *farmer*) and simple words preceded by a semantically related or unrelated word.

We asked where and when contextual constraints would affect processing of the different word types, and, in particular, if these effects would be seen in the earliest stages of visual word recognition and localise to posterior occipito-temporal areas. This would allow us to assess whether semantic context plays a role in early orthographic processing or later stages involved in lexical access.

Methods

Stimuli

conditions were included that contrasted the Three test presence/absence of a potential suffix in the target:

CONDITION	PRIME	TARGET
real suffix	crop	farmer
pseudo-suffix	cousin	brother
no suffix	sand	pebble

Subjects

Sixteen right-handed native English speakers took part in the experiment. They performed an occasional one-back memory task on 10% of targets.

MEG/EEG Acquisition and Source Reconstruction

Concurrent MEG-EEG data were acquired from a 306-channel Vectorview system with a 70-channel EEG cap. Raw data were ICA de-noised (blinks removed), and epochs were generated from -100 to 500 ms from word onset. A three-layer boundary element model was created using FreeSurfer from individual structural MRIs. L2 minimum norm estimation (MNE) was used to compute EMEG solutions.

Statistical Analysis

Sensor and source analyses were performed using cluster-based permutation statistics [4] across space and time as implemented in MNE Python [5].

References	 Rastle, K., Davis, M.H., & New, B. (2004). The broth in my brothe Marslen-Wilson, W.D. & Tyler, L.K. (2007). Morphology, language Whiting, C., Shtyrov, Y., & Marslen-Wilson, W.D. (2014). Real-time Maris, E., & Oostenveld, R. (2007). Nonparametric statistical testi Gramfort, A., Luessi, M., Larson, E., Engemann, D.A., Strohmeier,
------------	--

Neural dynamics of top-down contextual effects in visual word recognition

Combined MEG+EEG Data

Grand average across subjects at the source level (EMEG) collapsed across all related prime and all unrelated prime conditions, showing neural activity starting in bilateral occipital cortex and moving anteriorly to temporal and frontal areas, primarily on the left.

Results

Main Effect of Priming

• Sensor-level: main effect of priming from 200-500 ms in magnetometers (cluster-level p < .05) and 320-500 ms in gradiometers (cluster-level p < .05) .05), showing decreased activity with a related prime in left anterior sensors

MAGNEIOMEIEKS												
200 ms	220 ms	240 ms	260 ms	280 ms	300 ms	320 ms	340 ms	360 ms	380 ms	400 ms	420 ms	440 ms
	٢	٩	٢	Ô	Ô	٢	٢	٢	٢	٢		٢
REL	ATED	PRI	ME									
200 ms	220 ms	240 ms	260 ms	280 ms	300 ms	320 ms	340 ms	360 ms	380 ms	400 ms	420 ms	440 ms
٢	٢	٢		۲				٩	٨	٢	٨	٨
UNR			RIM	E								
200 ms	220 ms	240 ms	260 ms	280 ms	300 ms	320 ms	340 ms	360 ms	380 ms	400 ms	420 ms	440 ms
		٢				٩	٩	٩	٢	٩	٨	
.0 re	• S 5), late	our cor ed p	ce- nfiri prim	leve min ne i	el: Ig t n le	ma he ft t	in e ser em	effe Isor por	ct o -le al r	of p vel egi	res ons	ing sult s (I
2	.80 ms		300 m	IS	320) ms	3	840 ms		360 m	าร	380
1000	-150		25-16	44		54	and a	- 1/2 25		13-16	ALL	and and

Interaction of Condition and Priming • Sensor-level: interaction between condition and priming from 280-500 ms in left anterior magnetometers (cluster-level p < .05)

Semantic primes were matched based on cooccurrence using Latent Semantic Analysis.

> er's brothel: Morpho-orthographic segmentation in visual word recognition. Psychonomic Bulletin & Review, 11(6), 1090-1098. and the brain: the decompositional substrate for language comprehension. Phil. Trans. R. Soc. B, 362, 823-836. ne functional architecture of visual word recognition. Journal of Cognitive Neuroscience, 27(2), 246-265. ting of EEG-and MEG-data. Journal of Neuroscience Methods, 164(1), 177-190. D., Brodbeck, C., ... & Hämäläinen, M. (2013). MEG and EEG data analysis with MNE-Python. *Frontiers in Neuroscience*, 7, 267. doi:10.3389/fnins.2013.00267

¹Department of Psychology, University of Cambridge; ²MRC Cognition and Brain Sciences Unit, Cambridge, UK

Suffix (farmer)	400 ms				400 ms	fT 100.0 - 0.0 -100.0
eudo-Suffix (brother)	400 ms	420 ms	440 ms	460 ms	480 ms	fT 100.0 - 0.0